

Recognition of uncountably many languages with one counter

University of Latvia Faculty of computing PhD program student

Maksims Dimitrijevs, Abuzer Yakaryılmaz

Our scope

Different bounded-error probabilistic models: Error bound ε ($0 \le \varepsilon < \frac{1}{2}$):

- if $w \in L$, w is accepted with probability 1- ε ;
- if $w \notin L$, w is rejected with probability 1- ϵ .

How many resources is enough for realtime PTMs and PCAs to recognize uncountably many languages?

Realtime reading mode

Our realtime models operate in strict mode: any given input, say $w \in \Sigma^*$, is read as $\triangleright w \triangleleft$ from the left to the right and symbol by symbol without any pause on any symbol.

Uncountably many languages

- Logarithmic-space unary PTMs.
- Unary P2CAs.
- Unary PkCAs in $O(\sqrt[k-1]{n})$ space for k>2.
- loglog-space PTMs.
- Multicounter PCAs in O(^k√log n) space for any k≥1.
- P2CAs in $O(\sqrt[k]{n})$ space for any k>1.

Realtime PkCA

 $P = (S, \Sigma, \delta, s_1, s_a, s_r)$

- S the finite set of states,
- Σ the input alphabet,
- δ: S x Σ∪{▷,⊲} x {0,1}^k x S x {-1,0,1}^k →[0,1] the transition function,
- $s_1 \in S$ the initial state,
- s_a ∈ S and s_r ∈ S are the accepting and rejecting states, respectively.

Recognition of a language

Language $L \subseteq \Sigma^*$ is said to be recognized by a probabilistic machine P with error bound ε if:

- any member is accepted by P with probability at least 1-ε,
- any non-member is rejected by P with probability at least 1-ε.

Space complexity

A language L is recognized by a bounded-error PkCA in space s(n), if the maximum absolute value of any of the counters is not more than s(n) for any input with length n.

Lemma for 64^k coin flips

• Let $x = x_1 x_2 x_3$... be an infinite binary sequence. If a biased coin lands on head with probability $p = 0.x_101x_201x_301$..., then the value x_k can be determined with probability $\frac{3}{4}$ after 64^k coin tosses.

Lemma 2.0

Let $x = x_1 x_2 x_3 \dots$ be an infinite binary sequence. If a biased coin lands on head with binary probability value p=0. $x_101 x_201 x_301 \dots$, then the value x_k can be determined with probability at least 1 - 1/(4*2^I) after 64^k*2^I coin tosses, where I>0.

in the second second

DIMA3_I(I)

 $\mathsf{DIMA3}_{l} = \{0^{2^{0}}10^{2^{1}}10^{2^{2}}1\cdots 10^{2^{6k+l-2}}110^{2^{6k+l-1}}11^{2^{6k+l}}(0^{2^{3k+l-1}}1)^{2^{3k}} \mid k > 0\}$

$\mathcal{I} = \{I \mid I \subseteq \mathbb{Z}^+\}$

Let w_k be the k-th shortest member of DIMA3, for k>0.

$$\mathsf{DIMA3}_l(I) = \{ w_k \mid k > 0 \text{ and } k \in I \}$$

DIMA3_I(I)

 $w = 0^{t_1} 10^{t_2} 1 \cdots 10^{t_{m-1}} 110^{t_m} 11^{t'_0} 0^{t'_1} 10^{t'_2} 1 \cdots 10^{t'_n} 1$

- 5 paths with equal probabilities.
- 4 paths check whether $w \in DIMA3_{I}$.
- 5th path calculates x_k . If $x_k=1$, accept the input with probability 5/9 and reject with probability 4/9; if $x_k=0$, reject the input.

H = $i*8^{k+1}*2^{l} + j*8^{k}*2^{l} + q = (8i+j)*8^{k}*2^{l} + q$, where $i\ge 0, j \in \{0, 1, ..., 7\}$, and $q<8^{k}*2^{l}$.

DIMA3_I(I)

- If w∈DIMA3_I(I), the input is accepted with probability at least 5/9 - 1/(36*2^I).
- If w∉DIMA3_µ, the input is rejected with probability at least 5/9.
- If w∈DIMA3₁ and w∉DIMA3₁(I), the input is rejected with probability at least 5/9 1/(20*2¹).

Conclusion

For the recognition of uncountably many languages with bounded error realtime models:

- In case of unary alphabets we obtained positive result for P2CAs, while P1CAs can recognize only regular languages.
- In case of binary alphabets we obtained positive result for P1CAs, while PFAs can recognize only regular languages.

Thank you for your attention! Ďakujem!